Feuille de TD 8 - Polynômes

Questions du cours.

- (a) Définir l'anneau des polynômes à une variable à valeurs dans un corps \mathbb{K} (\mathbb{K} égal à \mathbb{R} , \mathbb{C} ou \mathbb{Q}).
- (b) Définir le degré d'un polynôme.
- (c) Écrire la formule du binôme de Newton.
- (d) Définir la derivée d'un polynôme.
- (e) Écrire la formule de Leibniz (derivée d'un produit) pour les polynômes.
- (f) Donner la définition de racine de multiplicité r d'un polynôme.
- (g) Écrire la formule de Taylor pour les polynômes.
- (h) Définir la division euclidienne d'un polynôme P par un polynôme Q.
- (i) Donner la définition de polynôme irréductible.
- (j) Définir la decomposition d'un polynôme en facteurs irréductibles. Est-elle unique?
- (k) Définir le plus grand commun diviseur (PGCD) d'une famille de polynômes. Est-il unique?
- (l) Énoncer le théorème fondamendal de l'algèbre.

Exercice 1. Effectuer les divisions euclidiennes de P par Q, avec

(a)
$$P(X) = X^3 - 2X^2 + 3$$
, $Q(X) = X - 2$,

(b)
$$P(X) = X^5 - 4X^3 + X$$
, $Q(X) = X + 1$,

(b)
$$P(X) = X^4 - 4X^4 + X$$
, $Q(X) = X + 1$,
(c) $P(X) = X^5 - X^4 + 3X^2 + 2$, $Q(X) = X^2 - 1$,

(d)
$$P(X) = X^6 + 3X^4 - 2X^2 - 3$$
, $Q(X) = X^2 + 1$,

(d)
$$P(X) = X^6 + 3X^4 - 2X^2 - 3$$
, $Q(X) = X^2 + 1$,
(e) $P(X) = X^5 - 2X^4 + 3X^3 - X$, $Q(X) = X^2 + X + 1$,

$$\begin{array}{ll} \text{(e)} \ \ P(X) = X^5 - 2X^4 + 3X^3 - X, \\ \text{(f)} \ \ P(X) = X^5 - 3X^4 - 3X + 1, \\ \end{array} \qquad \qquad Q(X) = X^2 + X + 1, \\ Q(X) = X^3 - 3X^2 + 1, \end{array}$$

(g)
$$P(X) = 2X^5 + 4X^4 + 5X^3 - 2X^2 - 4X + 16$$
, $Q(X) = X^2 + 2X + 4$,

(h)
$$P(X) = X^n - 1$$
, $Q(X) = X - 1$, avec $n \in \mathbb{N}^*$,

(i)
$$P(X) = X^n + 1$$
, $Q(X) = X + 1$, avec $n \in \mathbb{N}^*$.

Exercice 2. Calculer le reste de la division de P par Q sans calculer la division euclidienne dans les cas suivants.

(a)
$$P(X) = X^4 - 3X^3 + 2X^2 - 2$$
, $Q(X) = X - 1$,

(b)
$$P(X) = X^4 - 3X^3 + 2X^2 + 3X - 3$$
, $Q(X) = X + 1$,

(c)
$$P(X) = X^3 - X^2 - X + 1$$
, $Q(X) = X - i$,

(d)
$$P(X) = X^3 - iX^2 - 2X + 2,$$
 $Q(X) = X - i - 1,$

(e)
$$P(X) = X^4 - 3X^3 + 2X$$
, $Q(X) = X^2 + X - 2$,

(f)
$$P(X) = X^4 - 2X^3 - 4X^2 + 6X + 4$$
, $Q(X) = (X - 2)^2$,

(g)
$$P(X) = X^4 - 4X^2$$
, $Q(X) = X^2 - 2X + 2$.

Exercice 3. Déterminer pour quelles valeurs des paramètres $a,b\in\mathbb{C}$ le polynôme Q divise le polynôme P dans les cas suivants.

(a)
$$P_a(X) = X^3 - aX + 2$$
, $Q(X) = X - 2$,

(b)
$$P_a(X) = X^5 - aX^3 + 3X^2 - 2aX + 3,$$
 $Q(X) = X^2 + 1,$

(c)
$$P_a(X) = X^4 - 2X^2 - a$$
, $Q_b(X) = X^2 - bX + 1$.

Exercice 4. Soit $n \in \mathbb{N}$. Calculer le reste de la division euclidienne du polynôme $X^n + X + 1$ par le polynôme $(X-1)^2$.

Exercice 5. Pour quelles valeurs de $n \in \mathbb{N}^*$ le polynôme $P(X) = (X+1)^n - X^n - 1$ est-il divisible par $Q(X) = X^2 + X + 1$?

Exercice 6 (Algorithme d'Euclide). Soient P, Q deux polynomes.

- (a) Supposons que $\deg P \ge \deg Q$, et soit P = MQ + R la division euclidienne de P par Q. Montrer que PGCD(P, Q) = PGCD(Q, R).
- (b) Montrer que si de plus deg $R = -\infty$, alors PGCD(P, Q) = Q, et que si deg R = 0, alors PGCD(P, Q) = 1. Considerons l'algorithme suivant (dit algorithme d'Euclide). Donnés P, Q, on peut assumer que deg $P \geq$ $\deg Q$ (à moins d'inverser les rôles de P et Q). Soit P=MQ+R la division euclidienne. Si R=0, alors on définit D(P,Q) = Q. Si deg R = 0, alors D(P,Q) = 1. Autrement, on définit recursivement D(P,Q) = D(Q,R).
- (c) En utilisant les points (a) et (b), montrer que l'algorithme d'Euclide s'arrète en temps fini, et D(P,Q)PGCD(P,Q).

Exercice 7. Calculer le PGCD des familles suivantes.

(a)
$$P(X) = X^3 - 3X + 2$$
, $Q(X) = X^4 - 7X^3 + 4X^2 + 3X - 1$,

(b)
$$P(X) = X^4 - 2X^2 + 1$$
, $Q(X) = X^6 - 4X^4 + 3X^2$,

$$\begin{array}{ll} \text{(c)} \ \ P(X) = X^3 - 3X^2 + 2X - 1, \\ \text{(d)} \ \ P(X) = X^8 + X^4 + X^2 + X + 1, \end{array} \qquad Q(X) = X^4 - 3X^3 + 4X^2 - 3X + 2, \\ Q(X) = X^7 - 2X^2 - 2X - 1, \end{array}$$

(d)
$$P(X) = X^8 + X^4 + X^2 + X + 1$$
, $Q(X) = X^7 - 2X^2 - 2X - 1$,

(e)
$$P(X) = X^3 + X^2 + X + 1$$
, $Q(X) = X^6 - 1$, $R(X) = X^5 + 1$.

Exercice 8. Calculer le PGCD des polynômes $P_a(X) = X^4 + X^3 + (1 - a^2)X^2 - a^2X - a^2$ et $Q_b(X) =$ $X^2 - bX + 1$ au varier de $a, b \in \mathbb{C}$.

Exercice 9. Factoriser dans $\mathbb{C}[X]$ les polynômes suivants.

(a)
$$(X-1)^2 - 2i$$
, (b) $X^3 - 8i$,

(c)
$$X^5 + X^4 + X^3 + X^2 + X + 1$$
, (d) $(X^2 + 1)^2 + 1$.

Exercice 10. Factoriser dans $\mathbb{R}[X]$ les polynômes suivants.

(a)
$$X^2 - 3X + 2$$
, (b) $X^3 - 1$,

(c)
$$X^5 + X^4 + X^3 + X^2 + X + 1$$
, (d) $(X^2 + 1)^2 + 1$,

(e)
$$X^9 + X^6 + X^3 + 1$$
, (f) $X^5 - X^3 - 6X$.

Exercice 11 (Factorisation dans $\mathbb{R}[X]$). Montrons que un polynôme $P \in \mathbb{R}[X]$ est irréductible en $\mathbb{R}[X]$ si et seulement si deg P=1 ou deg P=2 et le discriminant $\Delta=b^2-4ac$ de $P=aX^2+bX+c$ satisfait $\Delta < 0$.

- (a) Montrer que si $\deg P = 1$, alors P est irréductible.
- (b) Montrer que si deg P=2, alors P est irréductible si et seulement si $\Delta < 0$.
- (c) Montrer que si deg P=2n+1>2 est impair, alors il existe $x\in\mathbb{R}$ tel que P(x)=0. En déduire que Pn'est pas irréductible.
- (d) Montrer que si deg P=2n>2 est pair, alors il existe un polynôme de degré au plus 2 qui divise P. En déduire que P n'est pas irréductible. (Hint : Montrer que si $z \in \mathbb{C}$ satisfait P(z) = 0, alors $P(\overline{z}) = 0$.)

Exercice 12 (Irréductibles dans $\mathbb{Q}[X]$). Soit $P_n(X) = X^n - 2$.

- (a) Factoriser P_n dans $\mathbb{C}[X]$.
- (b) Factoriser P_n dans $\mathbb{R}[X]$.
- (c) Montrer que P_n est irréductible dans $\mathbb{Q}[X]$ pour tout $n \in \mathbb{N}^*$.

(Hint: soit $P_n(X) = \prod_{j=1}^n (X - \eta_j)$ la factorisation de P_n dans \mathbb{C} . Utiliser le fait que P_n est réductible dans $\mathbb{Q}[X]$ si et seulement si il existe une famille $i_1 < \ldots < i_k \subseteq \{1, \ldots, n\}$ telle que $\prod_{h=1}^k (X - \eta_{i_h}) \in \mathbb{Q}[X]$.)

Exercice 13. Pour les polynômes P suivants, calculer la derivée P'. En déduire si P a des solutions multiples (dans \mathbb{C}), les déterminer et indiquer la multiplicité.

(a) $P(X) = X^4 - 3X^3 + 5X^2$,

- (b) $P(X) = X^4 6X^2 + 8X 3$,
- (c) $P(X) = X^4 + 3X^3 + 4X^2 + 3X + 1$,
- (d) $P(X) = X^4 + 2X^3 + 3X^2 + 2X + 1$,

(e) $P(X) = X^5 - 2X^3 + X$,

- (f) $P(X) = X^4 + 2X^3 + X^2 1$.
- (g) $P(X) = X^6 2X^5 X^4 + 4X^3 X^2 2X + 1$.

Exercice 14. Pour quelles valeurs de $a \in \mathbb{C}$ le polynôme $P_a(X) = X^3 - 3a^2X + 2$ admet une racine multiple?

Exercice 15. Soit $n \in \mathbb{N}$ et $P_n(X) = nX^{n+2} - (n+2)X^{n+1} + (n+2)X - n$.

- (a) Montrer que 1 est une racine multiple de $P_n(X)$, et en calculer la multiplicité.
- (b) Factoriser $P_3(X) = 3X^5 5X^4 + 5X 3$.

Exercice 16. Soit $P(X) = X^4 + 6X^3 + 9X^2 - 4X - 12$.

- (a) Calculer $P^{(i)}(-2)$ pour tout $i \in \mathbb{N}$.
- (b) Écrire P(X) comme polynôme en X + 2.
- (c) Est-ce que -2 est une racine de P? de quelle multiplicité?

Exercice 17. Montrer que si x est une racine de multiplicité m d'un polynôme P, alors x est une racine de multiplicité m-1 pour P'.

Exercice 18 (**Théorème de Bezout**). On veut montrer le théorème suivant. Soient P et Q deux polynômes (non nuls) premiers entre eux (c'est-à-dire, sans facteurs communs, ou de même, PGCD(P,Q) = 1). Alors, il existe R, S polynômes tels que

$$R(X)P(X) + S(X)Q(X) = 1.$$

(a) Supposons que deg Q=0. Trouver R,S tels que RP+SQ=1.

Supposons que $\deg P \ge \deg Q > 0$. Soient M et T avec $\deg T < \deg Q$ tels que P = MQ + T (division euclidienne).

- (b) Montrer que $T \neq 0$ et T et Q n'ont pas de facteurs communs.
- (c) Supposons qu'il existe R_1 et S_1 tels que $R_1Q+S_1T=1$. Montrer qu'il existe R et S tels que PR+QS=1.
- (d) Montrer le théorème de Bezout par recursion sur $n = \min\{\deg P, \deg Q\}$, en utilisant les points précédents.

Exercice 19. On veut trouver R et S tels que RP + SQ = 1, avec $P(X) = X^3 + 2X + 1$ et $Q(X) = X^2 - 1$.

- (a) Écrire P = MQ + T avec $\deg T < \deg Q = 2$.
- (b) Écrire Q = NT + U, avec $\deg U < \deg T$.
- (c) Trouver R_2, S_2 tels que $R_2T + S_2U = 1$.
- (d) Calculer $R_1 = S_2$ et $S_1 = R_2 NS_2$. Montrer que $R_1Q + S_1T = 1$.
- (e) Calculer $R = S_1$ et $S = R_1 MS_1$. Montrer que RP + SQ = 1.

Exercice 20. Soient $P(X) = X^3 - X$ et $Q(X) = X^4 - 5X^2 + 4$.

- (a) Factoriser P(X) dans $\mathbb{C}[X]$.
- (b) Quels facteurs de P divisent Q?
- (c) Déduire du point (b) la valeur de D = PGCD(P, Q).
- (d) Trouver R, S tels que RP + SQ = D.

Exercice 21. Trouver tous les polynômes à coefficients complexes P, Q tels que $P^2 = XQ^2$.

Exercice 22. Montrer que les seuls polynômes P à coefficients complexes tels que P' divise P sont les polynômes de la forme $\alpha(X-x_0)^k$, avec $\alpha, x_0 \in \mathbb{C}$ et $k \in \mathbb{N}$.